Function rationalize #

Transform a rationalizable expression in a rational fraction. If rational fraction is one variable polynomial then converts the numerator and denominator in canonical form, with decreasing exponents, returning the coefficients of numerator.

Syntax #

rationalize(expr, detailed)
rationalize(expr, scope)
rationalize(expr, scope, detailed)

Parameters #

Parameter Type Description
expr Node | string The expression to check if is a polynomial expression
optional Object | boolean scope of expression or true for already evaluated rational expression at input
detailed Boolean optional True if return an object, false if return expression node (default)

Returns #

Type Description  
Object | Expression Node The rational polynomial of expr or na object {Object} {Expression Node} expression: node simplified expression {Expression Node} numerator: simplified numerator of expression {Expression Node boolean} denominator: simplified denominator or false (if there is no denominator) {Array} variables: variable names {Array} coefficients: coefficients of numerator sorted by increased exponent {Expression Node} node simplified expression

Examples #

              //  Error: There is an unsolved function call
math.rationalize('2x/y - y/(x+1)')
              // (2*x^2-y^2+2*x)/(x*y+y)
              // 64*x^6+192*x^5+240*x^4+160*x^3+60*x^2+12*x+1
math.rationalize('2x/( (2x-1) / (3x+2) ) - 5x/ ( (3x+4) / (2x^2-5) ) + 3')
              // -20*x^4+28*x^3+104*x^2+6*x-12)/(6*x^2+5*x-4)
math.rationalize('x/(1-x)/(x-2)/(x-3)/(x-4) + 2x/ ( (1-2x)/(2-3x) )/ ((3-4x)/(4-5x) )') =
              // (-30*x^7+344*x^6-1506*x^5+3200*x^4-3472*x^3+1846*x^2-381*x)/
              //     (-8*x^6+90*x^5-383*x^4+780*x^3-797*x^2+390*x-72)

math.rationalize('x+x+x+y',{y:1}) // 3*x+1
math.rationalize('x+x+x+y',{})    // 3*x+y

const ret = math.rationalize('x+x+x+y',{},true)
              // ret.expression=3*x+y, ret.variables = ["x","y"]
const ret = math.rationalize('-2+5x^2',{},true)
              // ret.expression=5*x^2-2, ret.variables = ["x"], ret.coefficients=[-2,0,5]

See also #


Fork me on GitHub